--Must See--

Bioinformatics Summer Internship 2024 With Hands-On-Training + Project / Dissertation - 30 Days, 3 Months & 6 Months Duration

Single-Cell Transcriptomics Sheds Light on Cellular Targets of Kidney Disease

The kidney is a highly complex organ that performs many diverse functions that are essential for health. In the past, kidney cells have been annotated on the basis of their function, anatomical location or by the expression of a small number of marker genes, yet these classification systems do not fully overlap.

Now, a University of Pennsylvania team, in a new research has shed light on specific cell types that drive normal or diseased kidney function at the molecular level.

By sequencing the RNA from 57,979 cells from healthy mouse kidneys, the team found that mutations in genes that have similar characteristics are expressed in a single unique, differentiated cell type.

“The work provides unprecedented insight into kidney physiology and disease,” Katalin Susztak, MD, Ph.D., a professor of Renal-Electrolyte and Hypertension and Genetics said. “Each cell in the kidney seems to have a unique, non-redundant function, and dysfunction of specific cell types present with specific symptoms in people. Using our approach we are starting to understand how kidney disease develops at the level of a single cell.” The overall prevalence of chronic kidney disease in America is about 14 percent

, according to the National Institute of Diabetes and Digestive and Kidney Diseases.

The team through the analysis found that what they thought were two irreversibly differentiated and distinct cell types in the kidney could convert to each other. The interconversion was also observed in kidney disease mouse models.

They studied a large cohort of human patient samples from the human kidney biobank managed by Susztak and found that the interconversion might also occur in patients with kidney disease and likely contributes to a condition when the kidneys cannot remove enough acid from the body.

Knowledge from our survey will enhance our understanding of the roles that different cell types play during normal kidney functioning and dynamic changes occurring during disease development,” Susztak said. “When combined with existing knowledge, this study provides a new roadmap for future studies to identify the underlying causes of chronic kidney disease. A change in the basic identity of the cells, means that kidney disease ‘reprograms’ the kidney. Our goal is to find methods to undo this reprograming.”

In search of the perfect burger. Serial eater. In her spare time, practises her "Vader Voice". Passionate about dance. Real Weird.